
REVIEW

On the 275th Anniversary
of the Russian Academy of Sciences

ANALYTICAL METHODS OF SOLUTION
OF BOUNDARY-VALUE PROBLEMS
OF NONSTATIONARY HEAT CONDUCTION
IN REGIONS WITH MOVING BOUNDARIES

E′ . M. Kartashov UDC 536.2.001

Classical linear problems of nonstationary heat conduction (and of related phenomena) for canonical
regions and standard boundary conditions can be solved using well-developed analytical methods yielding an
exact solution of the problem [1−19]. For a bounded region, its analytical solution in the form of a Fourier
series where conjugation conditions for the functions in the boundary conditions of the problem at angular
points of the phase region of determination of the equation of nonstationary heat conduction are not fulfilled
[17] makes it possible to improve the convergence to an absolute and uniform one up to the boundary of the
region [20−22]. The improved solutions become very convenient in consideration of many practical issues of
thermophysics: calculations of thermophysical constants based on solution of inverse problems; determination
of the time of heating of a canonically shaped workpiece; calculation of the time in which the process
reaches the stationary phase, etc. In these and other cases, it becomes possible to investigate the kinetics of
the processes based on calculational analytical relations of a parametric character.

The introduction of additional factors into the formulation of a boundary-value problem even of the
linear type (complication of the shape of a body, motion of the boundary of the region, the time or space
dependence of the thermophysical characteristics of a medium, etc.) necessitates the development of a special
body of mathematics that, as a rule, yields an approximate solution of the problem and turns out to be effi-
cient for obtaining an exact solution only in a certain situation.

Below, we will be dealing with the temperature fields in regions whose boundaries move with time.
For parabolic equations of this kind, boundary-value problems are the subject of a practically unlimited num-
ber of investigations. As the years have gone by, their stream has not subsided, covering newer and newer
substantive mathematical objects and an ever increasing number of various applications. Similar problems
arise in the field of nuclear power engineering and safety of nuclear reactors [23−25]; in studying the process
of combustion in solid-propellant rocket engines [26]; in using electric discharges and also in the phenomena
of electric explosion of conductors [27] and other processes characterized by a high temperature (melting
electric contacts [28], the action of an electric arc in contacts [29, 30], erosion of electric contacts [31, 32]);
in a number of environmental and medicinal problems [33, 34]; in laser action on solids [35−43]; in phase
transformations (the Stefan problem and the Verigin problem (in hydromechanics) with more complicated
boundary conditions and a more general boundary-value problem for parabolic equations with a free bound-
ary) [43−63], including the cases of freezing of the ground [64, 65], solidification of concrete [66], and freez-
ing of solutions [67] and porous bodies [66]; in the processes of sublimation in freezing [69] and melting [70,
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71]; in the kinetic theory of crystal growth [72−81], in a number of thermomechanical problems (in heat
shock [82−84], thermal decomposition [85, 86], and thermal shield of spacecraft [87]); in optimization theory
[88] and numerical experiment [89]; in plasma dynamics and in plasma deposition [90−96]; in a number of
issues of hydromechanics [97−100], filtration [101−105], and ablation [106−108] and strength of solids [109];
in mathematical modeling of physicochemical processes occurring with the movement of the interface in iso-
tropic and anisotropic materials [110−117], including the processes indicated in [118, 119] (sublimation in
vacuum, growth and collapse of a vapor bubble, evaporation of liquid droplets, electroslag remelting, use of
the earth’s heat, precipitation of erythrocytes, porous cooling, filtration of a solution in a polymer, action of
superstrong magnetic fields, electroerosion grinding with a diamond-abrasive tool, oxidation of silicon, plastic
metal working, combustion, formation of p-n transitions in lamellar semiconductors, some issues of the theory
of dams, the mechanics of soils, the thermal behavior of oil pools, and also of filtration, electrodynamics, and
elasticity [120]); in special-type thermal problems with an integral condition in studying the process of trans-
fer of heat in a thin heated bar if the time-variable quantity of the heat of a part of the bar adjacent to one
end of it is assigned [121, 122], etc.

The boundary-value problems of nonstationary transfer in a noncylindrical region (considered, in par-
ticular, in [23−122]) involve the cases where the motion of the boundary of the region is assigned or the
cases where it is required that this motion be determined from additional conditions of the problem (the Ste-
fan condition that expresses the energy balance in transition of the medium from one aggregate state to an-
other or a Stefan-type condition in more general problems for a heat-conduction equation with a free
boundary).

We consider below modern analytical methods of solution of boundary-value problems for parabolic
equarions in noncylindrical regions, i.e., regions with curvilinear boundaries.

The abundance of works on boundary-value problems for parabolic equations in noncylindrical re-
gions that refer to the methods of numerical solution (numerical experiment), analytical methods of finding
exact and approximate solutions, asymptotic expansions of solutions, issues of qualitative theory, etc., re-
quired us to make of difficult decisions regarding the selection of material for the review and the list of
publications on this subject. Moreover, the main task of the selection assumed that the primary focus would
be on the methods of finding exact analytical solutions of boundary-value problems of nonstationary heat
conduction in regions with boundaries moving with time, on functional constructions as analytical solutions
for concrete laws of motion of a boundary, and on simple examples of an illustrative and substantive charac-
ter, since they would help the reader to better understand the formulated analytical approaches and results.
The purpose was to formulate a number of problems that required a solution.

In this connection, we consider in the work neither the issues of qualitative theory for parabolic equa-
tions nor asymptotic, numerical, graphical, and other approximate approaches. Nonetheless, in reflecting the
role of outstanding domestic scientists in the development of different approaches to finding and investigating
the solutions of boundary-value problems within the framework of differential equations of mathematical
physics (and similar directions), these issues are also receiving proper attention.

The contemporary mathematical school of partial differential equations in Russia and the CIS coun-
tries has inherited a rich legacy. As early as in the 18th century, Russia was a country where mathematics
made great progress. At that time, the St. Petersburg Academy of Sciences was joined by a new member −
the eminent Euler, whose works in mathematics and mechanics are well known. In the first half of the 19th
century, a significant contribution to the development of this science was made by Academicians M. B. Os-
trogradskii, V. Ya. Bunyakovskii, and others. The great discovery of non-Euclidean geometry made by N. I.
Lobachevskii enriched mathematics with new ideas that had a tremendous influence on the entire course of
its subsequent development and that of related areas of science (including those connected with partial differ-
ential equations). Important work on the theory of differential equations and mechanics was done by S. V.
Kovalevskaya. The 18th and 19th centuries should be called the period of the establishment and development
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of institutions of higher technical learning, including specialized schools of higher (for that time) type under
the patronage of the Russian Academy of Sciences.

In the late 19th and early 20th centuries, the work of the scientists of the so-called St. Petersburg
mathematical school headed by P. L. Chebyshev became widely known. It sparkled with such names as P. L.
Chebyshev himself, A. N. Korkin, E. I. Zolotarev, A. A. Markov (Senior), A. M. Lyapunov, V. A. Steklov,
G. F. Voronoi, D. A. Grave, and others. Their achievements in the field of mathematical physics and other
divisions of mathematics are well known. In the early 20th century, a school of applied mathematics began
to form in Moscow under the leadership of N. E. Zhukovskii and S. A. Chaplygin, and in the second decade
of the 20th century a theoretical-functional school headed by D. F. Egorov and his disciple N. N. Luzin
began to take shape. In 1920, the Institute of Physics and Mathematics was set up, with V. A. Steklov be-
coming its director. In 1923, the Institute of Physics and Mathematics was reorganized, with its mathematical
division becoming a separate institution, soon to be transformed into the V. A. Steklov Institute of Mathemat-
ics (its first director being Academician I. M. Vinogradov), which became a major scientific mathematical
center of the country. A number of Institutes of the Academy emerged on the basis of its departments, in
particular, the Institute of Applied Mathematics (its first director being Academician M. V. Keldysh; now it
is the M. V. Keldysh Institute of Applied Mathematics), and out of it in the 90s − the Institute of Mathemati-
cal Modeling (its first director being Academician A. A. Samarskii). Oming to the increase in scientific-re-
search personnel, independent mathematical institutes or sectors of mathematics were set up at all Republic
Academies of Sciences (i.e., National Academies of Sciences of the constituent Soviet Republics) and in
many cities of the Russian Federation. Numerous scientific schools began to develop at the boundary between
mathematics, mechanics, thermal physics, physics, chemistry, biology, etc.

A special role in the development of theoretical and applied thermal physics has been played by the
Institute of Heat and Mass Transfer of the BSSR Academy of Sciences, now the Academic Scientific Com-
plex "A. V. Luikov Institute of Heat and Mass Transfer," (IHMT), National Academy of Sciences of Belarus,
and personally by Academician A. V. Luikov, Member of the BSSR Academy of Sciences. Aleksei Va-
sil’evich Luikov became head of the indicated Institute in 1956, and within a short period of time a small
team of scientists grew to become a major thermophysical scientific center that became a Mecca of sorts for
many decades for thermophysicists of all ages, levels, and ranks from different cities of the Soviet Union and
foreign countries. A. V. Luikov initiated the All-Union Conferences on Heat and Mass Transfer that have
been held every four years at the Institute since 1961. Since 1988 they have been International Forums; hun-
dreds of scientists from different countries have participated in their work. The IVth International Forum on
Heat and Mass Transfer held in May, 2000 was dedicated to the 90th anniversary of A. V. Luikov’s birth.

Another factor uniting thermophysicists of all levels has been the "Inzhenerno-Fizicheskii Zhurnal"
(Inzh.-Fiz. Zh.), which was set up by A. V. Luikov in 1958 and led by him till the end of his life. It is hard
to overestimate the role of the Inzh.-Fiz. Zh. and its influence on the development of thermal physics and, in
particular, of the analytical theory of nonstationary heat and mass transfer through the publications of A. V.
Luikov himself and his numerous disciples and followers. Thousands of young researchers have managed to
achieve their personal fulfillment and to get a start in science owing to the Inzh.-Fiz. Zh., and, indeed, up to
this time the A. V. Luikov IHMT and the "Inzhenerno-Fizicheskii Zhurnal," which have begun to be per-
ceived as a united whole, have been playing a leading part in the preservation and development of the
world’s thermophysical science.

O. G. Martynenko, Member of the National Academy of Sciences and editor-in-chief of the Inzh.-Fiz.
Zh., dedicated a detailed paper, A. V. Luikov’s Scientific Legacy (On the 90th Anniversary of His Birth)
[Inzh.-Fiz. Zh., 73, No. 5, 869−883 (2000)], to A. V. Luikov’s life and work and to his enormous scientific
legacy.

Owing to their extremely wide application, the classical boundary-value problems for differential
equations of mathematical physics historically have drawn the attention of scientists of different directions:
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mathematicians, mechanics, physicists, chemists, thermophysicists, etc. New, more general and more correct,
physical models and corresponding mathematical models of processes have been created; new analytical,
graphical, numerical (using the finite-difference method) methods, methods of analogies, and other approaches
for the solution of entire classes of problems have been developed; the development of the qualitative theory
of partial differential equations has reached an extremely high level. The use of the computer-based numerical
methods has significantly expanded the class of mathematical models that allow exhaustive analysis. Based
on an exact solution of a problem even of a cumbersome form, one has been able to track the influence of
any parameter on the kinetics of a process. Difference schemes of approximate calculation of a problem’s
solution [123, 124] make it possible not to seek substantial simplifications that are necessary to obtain an
exact analytical solution in constructing an initial mathematical model of the process. The qualitative theory
of partial differential equations makes it possible, without solving the differential equations themselves (with
assigned boundary conditions), to obtain the required information on the solution’s respective properties
[125−127] (including those for boundary-value problems in noncylindrical regions [128−135]).

The analytical methods of the theory of nonstationary transport make it possible to obtain solutions
of a great number of boundary-value problems. The results of such solutions allow a clear and convenient
analysis of phenomena and make it possible to reflect the influence of all factors, to assess their significance,
and to identify the main ones among them. The presence of analytical solutions of a certain class of bound-
ary-value problems is also of interest for the construction of difference schemes of approximate calculation of
solutions for rather complex problems that are not readily investigated by other methods. The certainty of a
solution being calculated correctly is achieved by the use of the same computational scheme for calculating
model problems whose exact analytical solutions are known in advance.

In the past years, outstanding scientists of the former Soviet Union and Russia made their contribu-
tion to the development of mathematics and its applications in terms of corresponding model representations.
It is impossible to give a sufficiently full list of the entire galaxy of scientists who have worked and are
currently working in these areas within the scope of a review paper. Recognizing all this, the author has
confined himself to the publications cited in the References.

From the mathematical point of view, the boundary-value problems for parabolic equations in the re-
gion with a moving boundary are fundamentally different from classical ones (for cylindrical regions). Owing
to the dependence of the region’s boundary on time, the methods of separation of variables and of integral
Fourier−Hankel−Laplace transforms [14−21] are not applicable to this class of problems in the general case,
since, remaining within the framework of the classical methods of mathematical physics [136−153], one is
unable to coordinate the solution of the heat-conduction equation with the motion of the boundary of the
heat-transfer region. The development of this problem seems to have proceeded in the following way. On the
one hand, it became possible to obtain exact solutions of problems of this type using apt guesswork and
artificial procedures, and for a quite limited number of cases of boundary motion (first a linear one in the
region x ≥ l + vt, t ≥ 0, then parabolic x ≥ β√ t , t ≥ 0, [119]) and for a particular form of boundary conditions:
constant ones and those of the first kind. On the other hand, these problems were used, granted their quite
general formulation, to perfect the classical methods of solution of boundary-value problems for differential
equations of mathematical physics (and their modification) [154]: thermal potentials; contour integration; ex-
tensions; the Green’s functions; variational methods; series expansion of the function sought in generalized
powers; generalization of finite integral transforms to noncylindrical regions; Grinberg’s functional trans-
forms, and methods based on the use of integral, integro-differential, or ordinary differential equations, differ-
ence, asympotic, and numerical ones [155−186]. It was also explicable why different approaches were used to
solve one and the same class of problems. This can be explained by the fact that the solution of one and the
same thermal problem can be sought in different classes of functions that are determined by the analytical
approach in solving the problem. These functions must be such that they, first, could be found quite easily
and, second, would ensure the convergence on the process so well that it could be possible to draw conclu-
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sions on the properties of the obtained solution that are required by the problem. The representation of the
analytical solution of the problem in equivalent functional forms (identical in the sense of number) is of great
practical value since it allows variation of the solution depending on the problem’s formulation: for example,
a solution in the form of a Fourier-type series that is convenient for large times (found by an integral Fourier
transformation), or in the form of Poisson’s summation formula more suitable for small times (found by an
operational method). For regions with moving boundaries this fact is of particular importance, taking into
account the above-mentioned widespread use of problems of this class. At the same time, it should be em-
phasized that, despite the well-developed analytical theory of nonstationary heat and mass transfer and close
directions [1−21, 187−213], the success achieved in the last two decades in finding exact analytical solutions
of the problems for different laws of motion of a boundary is very insignificant. Technical difficulties of a
computational character in finding an exact analytical solution of the problem and loss of attention of the
analytical transport theory to this region are, apparently, one reason for this situation. At the same time, the
qualitative theory of parabolic differential equations in noncylindrical regions has forged far ahead during this
time.

The formulation of the boundary-value problem of nonstationary heat conduction considered in the
review is as follows.

Let Ωt be a noncylindrical region in the phase space (n + 1) of measurements whose section by the
plane-characteristic t = const ≥ t0 > 0 is a convex region Dt (Dt ∈  Rn) of variation of M(x1, x2, ..., xn), St be a
piecewise-smooth surface dependent on the time t ≥ 0 and limiting the region Dt, and n be the external nor-
mal to St so that Ω

__
t = {M ∈  D

__
t = Dt + St, t ≥ 0}. Let T(M, t) be a temperature function satisfying the condi-

tions of the problem:

     
∂T

∂t
 = a∆T (M, t) + f (M, t) ,   M ∈  Dt ,   t > 0 ; (1)

T (M, t)_t=0 = Φ0 (M) ,   M ∈  D
__

t=0 ; (2)

β1 
∂T (M, t)

∂n
 + β2T (M, t) = ϕ (M, t) ,   M ∈  St ,   t ≥ 0 . (3)

Here

f (M, t) ∈  C0 (Ω
__

t) ;   Φ0 (M) ∈  C1 (Ω
__

t) ;   ϕ (M, t) ∈  C0 (St × t ≥ 0) ;   β1
2 + β2

2 > 0 .

The solution sought is

T (M, t) ∈  C2 (Ωt) ∩ C0 (Ω
__

t) ,   grad M T (M, t) ∈  C0 (Ω
__

t) . (4)

Although the presented approaches hold true for boundary-value problems for Eq. (1), in fact, we can
also consider equations of the form (for n = 3)

∂T

∂t
 = a∆T (M, t) − b2T (M, t) + v ⋅ grad T (M, t) + f (M, t) , (5)

since by the formulation
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T (M, t) = U (M, t) exp 






− 

1
2a

 r ⋅ v − 






b2 + 

1
4a

  ∑ 
i=1

3

 vi
2






 t







 ,

where M = M(x1, x2, x3), v = v1i + v2j + v3k (vi = const), b2 = const, and r = x1i + x2j + x3k, Eq. (5) is reduced
to the case (1)

∂U

∂t
 = a∆U (M, t) + F (M, t) .

Here F(M, t) is a new (known) function.
Considered below are predominantly linear thermal problems (n = 1) in a Cartesian coordinate system

and plane problems (n = 2) in cylindrical (a cylindrical field) and spherical (a spherical field) coordinate
systems − the most extensively studied cases at present. As far as spatial regions are concerned, the solution
of a multidimensional problem for canonical regions can be represented in the form of a product of solutions
of one-dimensional problems (for example, in constructing the Green’s function). The method of functional
transformations considered below also makes it possible to study (1)−(3) in spatial regions, retaining and not
retaining similarity.

In regions with moving boundaries, just as in the case of cylindrical regions, we can also speak of
the first (β1 = 0), the second (β2 = 0), or the third (βi > 0, i = 1, 2) boundary-value problems. However, the
indicated equivalence in representation of boundary conditions is not always retained. In particular, the heat-
insulation condition for a moving boundary of the region x ∈  [0, y(t)], t ≥ 0, where y(t) for t > 0 is a continu-
ously differentiable function with finite derivatives of any order, has the form [154]





∂T (x, t)
∂x

 + 
v (t)

a
 T (x, t)



 x=y(t)

 = 0 ,   t > 0 , (6)

and for the velocity of motion v(t) = dy(t)/dt = 0 (y(t) = const) expression (6) coincides with a classical
representation of the heat insulation of an immovable (fixed) boundary that follows from the Fourier law in
scalar form [16]. The special properties of the region with a moving boundary also manifest themselves in
the formulation of boundary-value problems for the corresponding Green’s functions [214]. Here, special at-
tention should be concentrated on finding the Green’s function for the second and third boundary-value prob-
lems (see below).

With regard to each of the boundary-value problems (1)−(3) there arise issues of correctness of their
formulation: (1) the existence of the solution; (2) the uniqueness of the solution, and (3) the stability of the
solution. As has been indicated, these issues are considered in the qualitative theory of parabolic equations in
regions with curvilinear boundaries. Problems not satisfying the enumerated requirements (1)−(3) above are
called incorrectly formulated. In 1962, A. N. Tikhonov developed new approaches to solving incorrectly for-
mulated problems whose basis was formed by the fundamental notion of a regularizing operator [215]. These
issues have also been the object of the investigations [216−218], and also of the works on inverse problems
of heat conduction that are incorrect in formulation [219−221].

It is assumed below that the boundary functions in (1)−(3) and the laws of movement of a boundary
are smooth functions for which all the transformations occurring in the process of calculation exist. These
functions are prescribed by the practice of numerous applications of problems (1)−(3). Analytical solutions of
the latter belong to the class of functions (4). In the 1930s, S. L. Sobolev developed a theory of generalized
solutions for partial differential equations. Subsequently the qualitative theory of boundary-value problems for
parabolic equations in a generalized formulation in Sobolev spaces and other functional spaces and the theory
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of these spaces for the solution of problems (the embedding theorems, the trace theorems, compactness of
embedding and the theory of averaging, etc.) [125−127, 222−225] and also other theories were developed.
These issues are considered in detail in the recently published work [146].

1. Method of Green’s Functions. Regions x ∈  [y1(t), y2(t)], t ≥ 0, and x ∈  [y(t), ∞), t ≥ 0

The method of Green’s functions is more preferable than other approaches in view of its universality.
It can be applied to solution of problems (1)−(3) in one-, two-, and three-dimensional cases in bounded and
semibounded regions Ω

__
t for rather general boundary functions in (1)−(3) and source functions. Each case of

finding the Green’s function of the boundary-value problems (1)−(3) is very important, since it contains vo-
luminous information, permitting one to write the integral form of a great number of analytical solutions de-
pending on the inhomogeneities in (1)−(3).

In [226], it is established that for the problem

∂T ⁄ ∂t = a∂2T ⁄ ∂x2 + f (x, t) ,   y1 (t) < x < y2 (t) ,   t > 0 ; (7)

T (x, 0) = Φ0 (x) ,   y1 (0) ≤ x ≤ y2 (0) ; (8)

[βi1∂T (x, t) ⁄ ∂x + βi2T (x, t)]x=yi (t)
 = βi3ϕi (t) ,   t ≥ 0 , (9)

the corresponding Green’s function G(x, t, x′, τ) as a function of (x, t) is found from the conditions

∂G ⁄ ∂t = a∂2G ⁄ ∂x2 ,   y1 (t) < x < y2 (t) ,   t > τ ; (10)

G (x, t, x′, τ)_t=τ = δ (x − x′) ,   y1 (τ) < (x, x′) < y2 (τ) ; (11)

(βi1∂G ⁄ ∂x + βi2G)x=yi(t)
 = 0 ,   t > τ   (i = 1, 2) , (12)

and as a function of (x′, τ) satisfies the conditions

∂G ⁄ ∂τ + a∂2G ⁄ ∂x′2 = 0 ,   y1 (τ) < x′ < y2 (τ) ,   τ < t ; (13)

G (x, t, x′, τ)_τ=t = δ (x′ − x) ,   y1 (t) < (x′, x) < y2 (t) , (14)

and then in the case of the first boundary-value problem in (9) (βi1 = 0; βi2 = βi3  = 1)

G (x, t, x′, τ)_x′=yi(τ) = 0 ,   τ < t   (i = 1, 2) ; (15)

in the case of the second boundary-value problem in (9) (βi2 = 0; βi1 = βi3 = 1)





∂G

∂x′
 + 

1

a
 
dyi (τ)

dτ
 G



 x′=yi(τ)

 = 0 ,   τ < t  (i = 1, 2) ; (16)

in the case of the third boundary-value problem in (9) (βi1 = 1; βi2 = βi3 = (−1)ihi)
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∂G

∂x′
 + (− 1)i 




hi + (− 1)i−1 

1

a
 
dyi (τ)

dτ




 G



 x′=yi(τ)

 = 0 ,   τ < t   (i = 1, 2) . (17)

Here δ(z) is the Dirac delta function.
Thus, the function G(x, t, x′, τ) can be found as the solution of equivalent problems for Eqs. (10) and

(13) with the above boundary conditions. The main conclusion is that for regions with moving boundaries no
equivalence is preserved in representation of boundary conditions in the formulations of the problems in (x,
t) and (x′, τ) unlike cylindrical regions. Thus, in the case of the second and third boundary-value problems in
(7)−(9), construction of the Green’s functions from (x′, τ) is related to the time-variable "relative coefficient
of heat exchange" in the boundary conditions (16)−(17). This is a rather cumbersome class of problems, to
which item 7 of the review is devoted. In practice, it is expedient to use the formulation (11)−(12) in con-
structing the Green’s functions. For a region with moving boundaries, the function G(x, t, x′, τ), owing to its
physical meaning (the thermal pulse of the power Q = cρ [139]), depends on t and τ and not on the differ-
ence (t − τ), since it is not just the action time (t − τ) but also the instant τ of occurrence of the pulse that
will be determining. The integral representation of the analytical solution of problem (7)−(9) has the form

T (x, t) =   ∫ 

y1(0)

y2(0)

  T (x′, 0) G (x, t, x′, 0) dx′ +  ∫ 
0

t

   ∫ 

y1(τ)

y2(τ)

 f (x′, τ) G (x, t, x′, τ) dτdx′ +

+  ∑ 

i=0

2

  ∫ 
0

t

 







αi1 

∂T (x′, τ)

∂x′
 + αi2 T (x′, τ)




 × 




γi1 

∂G (x, t, x′, τ)

∂x′
 + γi2 G (x, t, x′, τ)







 x′=yi(τ)

 dτ , (18)

where
αi1 = γi2 = 0; αi2 = (−1)i−1, γi1 = 1 in the case of the first boundary-value problem;
αi2 = γi1 = 0; αi1 = (−1)i; γi2 = 1 in the case of the second boundary-value problem;
αi1 = (−1)i; αi2 = hi; γi1 = 0, and γi2 = 1 in the case of the third boundary-value problem.
From (18) it is easy to obtain a similar representation for the region [y(t), ∞), t ≥ 0, too, letting x′ =

y2(τ) → ∞ and taking into account that the functions T and G and their derivatives, with respect to x′ tend to
zero. In finding a particular expression for the function G, it is recommended in [214] that G(x, t, x′, τ) be
represented in the form

G (x, t, x′, τ) = 
1

2 √ πa (t − τ)
 exp 




− 

(x − x′)2

4a (t − τ)




 + q (x, t, x′, τ) = G0 + q , (19)

where G0 is the fundamental solution of Eq. (7) (for f = 0); q(x, t, xI, τ) is the regular component of the
Green’s function to be found from the problem (10)−(12) transformed in advance relative to the function q
with a homogeneous initial condition.

The above method held true for boundary-value problems for the parabolic equation (1), and in this
respect it is quite a developed theory. The situation is much worse for a hyperbolic heat-conduction equation
of the type of [1] in a noncylindrical region:

1

a
 
∂T (x, t)

∂t
 + 

1

vh
2 

∂2T

∂t2
 = 

∂2T

∂x2  + F (x, t) ,   y1 (t) < x < y2 (t) ,   t > 0 , (20)
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where vh = √a ⁄ τrel , is the velocity of propagation of heat and τrel is the relaxation time of the heat flux. For
this case, the method of the Green’s functions is practically not developed, and the problem remains open. A
similar situation also occurs for boundary-value problems based on the Gurtin−Pipkin integro-differential
equation of heat conduction with allowance for thermal memory [191]. Thus, in the case of thermal heating
(the second boundary-value problem) the indicated model has the following form:

β (0) 
∂T (x, t)

∂t
 + cv 

∂2T

∂t2
 + ∫ 

0

∞

β′ (τ) 
∂T (x, t − τ)

∂t
 dτ =

= α (0) 
∂2T

∂x2  + ∫ 
0

∞

α′ (τ) ∂
2T (x, t − τ)

∂x2  dτ ,   0 < x < y (t) ,   t > 0 ;

T (x, 0) = [∂T (x, t) ⁄ ∂t]t=0 = 0 ,   0 ≤ x ≤ y (0) ;

 ∫ 
0

∞

α (τ) 
∂T (x, t − τ)

∂x



 x=0

 dτ = q0 ,   t > 0 ;

 ∫ 
0

∞

α (τ) 
∂T (x, t − τ)

∂x



 x=y(t)

 = q1 ,   t > 0 ,

(21)

where cv is the volumetric heat capacity and α(t) and β(t) are, respectively, the (selected) relaxation functions
of the heat flux and the internal energy. The development of analytical theory (exact solutions; qualitative
issues) for this class of boundary-value problems is one promising method of the modern analytical theory of
nonstationary heat transfer.

2. Method of Thermal Potentials. Regions x ∈  [l + vt, ∞), t ≥ 0, and x ∈  [0, l + vt], t ≥ 0. Green’s Functions

In [139, 148], generalized thermal potentials of a single and double layer are described as one possi-
ble body of analytics in solving problems (7)−(9). It is shown that their application reduces the problem to
either a Volterra integral equation of the second kind or a system of such equations that always possesses a
solution. Using the Picard process, we were able to write the first (one or two) approximations of the solution
for this system. The intricacy and cumbersomeness of the indicated procedure in using thermal potentials has
repeatedly been noted in the literature. In [16, 84], this method was modified and turned out to be especially
efficient for regions with a uniformly moving boundary, both in solving the problem in the initial formulation
(7)−(9) (for f = 0 or f = f(t)) and in constructing the corresponding Green’s function. The resultant analytical
solutions of the problem have a new (simpler) integral form different from those known earlier. The solution
of the problem

∂T ⁄ ∂t = a∂2T ⁄ ∂x2 ,   x > l + vt ,   t > 0 ; (22)

T (x, 0) = 0 ,   x ≥ l ;   (β1∂T ⁄ ∂x + β2T)x=l+vt = β3ϕ (t) ,   t ≥ 0 ; (23)

_T (x, t)_ < + ∞ ,   x ≥ l + vt ,   t ≥ 0 , (24)
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is written in the form of the generalized thermal potential of a single layer relative to the curve x = l + vt:

T (x, t) = 
√a

2 √π
  ∫ 

0

t

 
Ψ (τ)
√ t − τ

 exp 



− 

(x − l − vτ)2

4a (t − τ)




 dτ , (25)

where Ψ(t) is the unknown potential density to be found from the boundary condition (23). In the space of

Laplace transforms T
__

(x, p) = ∫
0

∞

 T(x, t) exp (−pt)dt, Re p ≥ β > 0,  arg p| < 
π
2

, expression (25) acquires the

form

T
__

 (x, p) = 
√a

2 √p
 exp [− (x − l) √p ⁄ a  ] Ψ

__
 (p − v √p ⁄ a  ) , (26)

whence it follows that the unknown density should be sought relative to the form Ψ
__

(p − v√ p ⁄ a). The final
operational (basic) solution of problem (22)−(24) has the form

T
__

 (x, p) = Θ
__

 (p) 



1 − 

v ⁄ (2a)
 √p ⁄ a




 exp [− (x − l) √p ⁄ a  ] ϕ

__
 (p − v √p ⁄ a  ) , (27)

where Θ
__

(p) = 











1

−1 ⁄ √ p ⁄ a

h ⁄ (h + √ p ⁄ a )

    

   for  the  first  boundary−value  problem   (β1 = 0 ,  β2 = β3 = 1);   

  for  the  second  boundary−value  problem   (β2 = 0 ,  β1 = β3 = 1);   

  for  the  third  boundary−value  problem   (β1 = 0 ,  β2 = β3 = − h).

 Expression (27) involves numerous particular cases of the boundary function ϕ(t) in (23) that are of
practical interest: homogeneous, pulsed, pulsating, periodic, etc. Passage to the inverse transforms occurs by
the known rules of operational calculus and leads to analytical solutions of a very compact form. Thus, in the
case of the first boundary-value problem

T (x, t) = 
1

2 √πa
  ∫ 

0

t

 
x − (l + vt)
(t − τ)3 ⁄ 2

 ϕ (τ) exp 



− 

(x − l − vτ)2

4a (t − τ)




 dτ . (28)

All the reasoning also holds in the presence of the homogeneous nonstationary source f(t) in (22), and on the

right-hand side in (28) there appears a term ∫ 
0

t

f(τ)dτ  that makes the calculations slightly more complicated.

In the case of a nonhomogeneous nonstationary source f(x, t) and a nonhomogeneous boundary condition, we
should construct the Green’s function in advance, using for this purpose expression (27), the above definition
of the Green’s function, and its representation in the form (19). In the case of the third boundary-value prob-
lem [226],

G (x, t, x′, τ) = 
1

2 √ πa (t − τ)
 



exp 




− 

(x − x′)2

4a (t − τ)




 + exp 




− 

(x + x′ − 2 (l + vτ)2

4a (t − τ)
 + 

v

a
 (x′ − (l + vτ)








 −

− 

h + 

v
2a




 exp 




[x + x′ − 2 (l + vτ)] h + ah2 (t − τ) + 

v
a

 [x′ − (l + vτ)]


 ×
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× Φ∗  




x + x′ − 2 (l + vτ)
2 √a (t − τ)

 + h √a (t − τ)  



 , (29)

where Φ∗ (z) = 1 − Φ(z) and Φ(z) = (2/√π ) ∫
0

z

exp (−y2)dy is the Laplace function. Setting in (29) h = 0, we

find the Green’s function of the second boundary-value problem; passage to the limit when (1/h) → 0 leads
to Green’s function for the first boundary-value problem. The given relations make it possible to consider the
case of spherical symmetry, too, if it is remembered that the equation

∂T

∂t
 = a 





∂2T

∂r2  + 
2

r
 
∂T

∂r




 ,   r > R + vτ ,   t > 0 , (30)

using the substitution U(r, t) = rT(r, t) is reduced to the form (22). In the case of the cylindrical field T(r, t)
in r > R + v, t > 0, it is expedient to use the method of functional transformations considered below. The the-
ory of thermal potentials is practically not developed for this case.

As to the bounded region x ∈  [0, l + vt], t ≥ 0, for Eq. (22) with a homogeneous initial condition,
here it suffices to use the thermal potential of a single layer relative to the curve x = 0 and the generalized
thermal potential of a single layer relative to the curve x = l + vt with boundary conditions of any kind [226]:

T (x, t) = 
√a

2 √π
  ∫ 

0

t

 
Ψ1 (τ)

 √ t − τ
 exp 




− 

x2

4a (t − τ)




 dτ + 

√a
2 √π

  ∫ 
0

t

 
Ψ2 (τ)

 √ t − τ
 exp 




− 

(x − l − vτ)2

4a (t − τ)




 dτ , (31)

where Ψi(t) (i = 1, 2) are the unknown densities to be found from the boundary conditions relative to the
form that is established in the space of Laplace transforms

T
__

 (x, p) = 
1

2 √p ⁄ a
 

Ψ
__

1 (p) exp (− x √p ⁄ a  ) + Ψ
__

3 





√p  + 

v

2 √a





2

 

 exp [− (l − x) √p ⁄ a  ]


 , (32)

where Ψ3(t) = Ψ2(t) exp (v2t ⁄ 4a). The method leads to new integral representations for the analytical solu-
tions of thermal problems in the region with a uniformly moving boundary. For example, with boundary con-
ditions of the first kind in (9) the method yields

T (x, t) = 
1

2 √aπ
    ∑ 

n=−∞

n=+∞

     ∑ 

k=0

1

 (− 1)k  ∫ 
0

t

 
[x + (2n + k)] (l + vt)

(t − τ)3 ⁄ 2
 ϕk+1 (τ) ×

× exp 



− 

v (l + vτ) (n2 + kn)
a

 − 
[x + (2n + k) (l + vτ)]2

4a (t − τ)



 dτ . (33)

In the presence of the inhomogeneities indicated in (7)−(9), the problem becomes rather difficult technically;
however relation (33) makes it possible to easily overcome difficulties in finding the corresponding Green’s
function. In the space of transforms, expression (33) has the form

T
__

 (x, p) = ϕ
__

1 (p) exp (x √p ⁄ a  ) + 
1

√p
  ∑ 

n=0

∞

  ∑ 

k=0

1

 (− 1)k [√p  + γ (2n + k)] ×
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× exp 



− 

2lγ
√a

 (n2 + nk)

 



exp 




− 

(2n + k) l + x

√a
 √p




 − exp 




− 

(2n + k) l − x

√a
 √p








 ϕ
__

2k+1 [(√p  + (2n + k) γ)2] , (34)

where ϕ3(t) = ϕ2(t) exp (γ2t) and γ = v ⁄ (2√a). Expression (34) can serve as the working formula for writing
the analytical solutions (in transforms) of the first boundary-value problem for a wide class of the boundary
functions ϕi(t) (for Φ0 = f = 0), including the construction of the Green’s function, based on representation
(19) (in passage to the inverse transforms in (34), we should single out in advance the term n = 0 for k = 0).
For G(x, t, x′, τ) we have (in the case of the first boundary-value problem)

G (x, t, x′, τ) = 
1

2 √ πa (t − τ)
   ∑ 

n=−∞

n=+∞

  exp 



− 

2l0 γn2 + 2γx′n

√a




  ∑ 

k=1

2

 (− 1)k−1 exp 



− 

(2l0n + x′ + (− 1)k x)2

4a (t − τ)




 , (35)

where l0 = l + vτ and γ = v ⁄ 2√a . Knowing the Green’s function (35), we can write the analytical solution of
the first boundary-value problem in (7)−(9) in integral form using (18). For example, in the case Φ0(x) = T0,
ϕi(t) = Tw (i = 1, 2) expression (18) yields (f = 0)

W (z, Fo) = 
T (x, t) − Tw

T0 − Tw

 = 
1

2 √πFo
    ∑ 

n=−∞

n=+∞

   exp (− v0n2) ×

× ∫ 
0

1

exp (− v0nξ) 



exp 




− 

(2n + ξ − z)2

4Fo




 − exp 




− 

(2n + ξ + z)2

4Fo








 dξ , (36)

where z = x ⁄ l, v0 = vl ⁄ a, and Fo = at ⁄ l2.
As to the region x ∈  [l1 + v1t, l2 + v2t], t ≥ 0, for T(x, t) in (7)−(9), this case is easily reduced to the

previous one using the following transformations:

z = x − (l1 + v1t) ,   T (x, t) ≡ W (z, t) ;   W (z, t) = Θ (z, t) exp (− v1z ⁄ 2a − v1
2t ⁄ 4a) , (37)

where z ∈  [0, l0 + v0t], t ≥ 0; l0 = l2 − l1 and v0 = v2 − v1; Θ(z, t) satisfies Eq. (7) (for a new (known) source
function). Similarly, we can also consider the region x ∈  [vt, l + vt], t ≥ 0; the transformations (37) reduce
this region to the case x ∈  [0, l], t > 0, studied in detail in [20]. For the case of central symmetry (30) for r
∈  [0, R + vt], t ≥ 0, the Green’s function of the first boundary-value problem has the form

G (r, t, r′, τ) = 
1

8πrr′ √ πa (t − τ)
   ∑ 

n=−∞

n=+∞

  exp 



− 

R0vn2 + r′vn

a




  ∑ 

k=1

2

 (− 1)k+1 exp 



− 

(2R0n + r′ + (− 1)k r)2

4a (t − τ)




 ,

where R0 = R + vτ. For other boundary conditions, the specific features of the method (31)−(32) lie in just
solving a finite-difference equation of the F

__
(p + b) − F

__
(p) = C

__
(p) type in finding the unknown densities of

potentials in (32) and in passage to the inverse transform. In the type of boundary conditions, problem (7)−(9)
allows nine formulations in the region x ∈  [0, l + vt], t ≥ 0, and the same number of formulations for the case
of central symmetry. Studied in literature are cases 1−1; 1−2; 1−3; 2−1 and, in a very cumbersome form, case
3−3 (references in [119]). Although a uniform law of motion of a boundary is the most frequently used in
applications [35, 154], nonetheless, the results accumulated show that the problem invites further study: it is
required that the Green’s functions and temperature-distribution curves be constructed from solutions of the
type (36) and effects that can appear in motion of the region boundary be studied [16]. An important element
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of investigations in this problem is finding the Green’s function G(x, t, x′, τ) in different functional forms for
large and small times. For example, for the region x ∈  [vt, l + vt], t ≥ 0, in the case of the first boundary-
value problem we can write

G (x, t, x′, τ) = 
1

2 √ πa (t − τ)
 exp 


− 

v

2a
  (x − x′) − (v ⁄ 2) (t − τ)




 ×

×   ∑ 

n=−∞

n=+∞

   



exp 




− 

(2 ln + x − x′ − v (t − τ))2

4a (t − τ)




 −

− exp 



− 

(2 ln + x + x′ − v (t + τ))2

4a (t − τ)







 = 

2
l
 exp 





v
2a

 (x′ − x) + 
v2

4a
 (t − τ)




 ×

×  ∑ 

n=1

∞

 sin 
nπ (x′ − vτ)

l
 sin 

nπ (x − vt)
l

 exp 



− 




nπ √a

l




 2

 (t − τ)



 .

This problem is open even for the classical region x ∈  [0, l], t ≥ 0, where only the simplest cases (1−1), (1−2),
and (2−1) of the nine are considered. Practically not considered are the regions r ∈  [R1, R2], t ≥ 0 (R1 ≥ 0,
R2 > 0) for spherical and cylindrical symmetry, to say nothing of more complicated regions (with a uniformly
moving boundary) [16]. As is seen, even the simplest linear problems of the analytical theory of heat conduc-
tion are far from being exhausted as the subject of investigations. As to the region r ∈  [0, R + vt], t ≥ 0, for
the case of the radial heat flux in cylindrical coordinates, the theory of thermal potentials here remains to be
developed. For this case we can use a generalized Appel transformation (references in [119]). The inversion-
type transformation

z = 
γ (r + α)

t + β
 + c1 ;   τ = − 

γ2

t + β
 + c2 ;   

U (z, τ) = c3 [(t + β)]−(ν+1) ⁄ 2 exp 



− 

r2

4 (t + β)



 T (r, t)

transforms the equation Tt
′ = Trr

′′  + vr−1Tr
′  to an equation of the same form. For ν = 0 this transformation was

found by Appel and subsequently used by Huber in solution of the first boundary-value problem in the indi-
cated region. To construct the Green’s function of the first boundary-value problem in the region [0, R + vt],
we consider a more general problem of the form

∂T

∂t
 = 

∂2T

∂r2  + 
1

r
 
∂T

∂r
 ,   0 ≤ r < R + vt ,   t > 0   (R ≥ 0) ;

T (r, 0) = f (r) ,   0 ≤ r ≤ R ;   T (r, t)_r=R+vt = 0 ,   t > 0 ;

_T (r, t)_ < + ∞ ,   r ≥ 0 ,   t ≥ 0 .

Let τ = 0 for t = 0, and z = 0 for r = 0 and z = 1 for r = R + vt. We obtain β = R ⁄ v and γ = 1 ⁄ v. Setting
α = c1 = 0 and c3 = v−1, we arrive, in the coordinate system (z, τ), at a classical problem whose solution is
found by the method of integral transformations developed in [20, 21]. Finally we find
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T (r, t) = 2R−1 (R + vt)−1 exp 



− 

vr2

4 (R + vt)




  ∑ 

n=1

∞

 
J0 (µnr ⁄ (R + vt))

J1
2 (µn)

 ×

× exp 



− 

µn
2t

R (R + vt)




 ∫ 
0

1

ξf (ξ) exp 




v

4R
 ξ2



 J0 (µnξ) dξ ,

where µn > 0 are the roots of J0(µ) = 0. If f(r) = 2(πr)−1δ(r − r′), from the above solution it is easy to find
the Green’s function of the first boundary-value problem for an unbounded continuous cylinder with a uni-
formly expanding lateral surface. It is also of interest to consider the second and third boundary-value prob-
lems and a hollow cylinder r ∈  [R0, R1 + vt], t ≥ 0 (R0 > 0, R1 > 0) and the more complicated case r ∈
[R1 + v1t, R2 + v2t], t ≥ 0. 

 The method of thermal potentials can efficiently be used in finding the analytical solutions of com-
paratively new problems of heat conduction with an integral boundary condition; these problems are encoun-
tered in modeling a number of environmental and biological processes and those of plasma physics and
thermomechanics [227]. Here we can obtain results that are of fundamental interest. For example, a solution
of the problem

∂T

∂t
 = a 

∂2T

∂x2  ,   x > 2 √a  y (t) ,   t > 0 ; (38)

T (x, 0) = 0 ,   x ≥ 0 ;   _T (x, t)_ < + ∞ ,   x ≥ 0 ,   t ≥ 0 ; (39)

     ∫ 

2√ay(t)

∞

   T (x, t) dx = 2 √a  y (t) , (40)

where y(t) is the known time function, should be written in the form of the thermal potential

T (x, t) = ∫ 
0

t
Ψ (τ)
√ t − τ

 exp 



− 

[x − 2 √a  y (τ)]2

4a (t − τ)




 dτ ,

whose unknown density Ψ(t) is found from the boundary condition (40), which leads to the equation

 ∫ 
0

1

Ψ (zt) 



1 − Φ 





y (t) − y (zt)
√ t (1 − z)








 dz = 2y (t) ⁄ √πt  . (41)

Let y(t) = βt in (38). The operational solution of the integral equation (41) will have the form

Ψ (t) = (2β ⁄ √π  ) [1 + β2t + (β2t + 1 ⁄ 2) Φ (β √ t  ) + (β ⁄ √π  ) √ t  exp (− β2t)] .

For y(t) = β√ t , Eq. (41) has the solution

Ψ (t) = 
β

√πγt
 ;   γ = [1 + Φ (β)] [1 − √π  β exp (β2) Φ∗  (β)] ,
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where Φ∗ (β) = 1 − Φ(β); Φ(β) is the Laplace function. Similarly we can also study the remaining cases.

3. Method of Generalized Series. Regions [0, γ√2at ], t ≥ 0, and [γ√2at , ∞), t ≥ 0

Systematic study of nonstationary heat conduction in the indicated regions began, apparently, in the
1950s from finding an exact solution of the first boundary-value problem in a semibounded region for a con-
stant temperature at a moving boundary. Subsequently, consideration was given to a bounded region with the
following boundary functions: constant, power, and expandable into Maclaurin series (references in [119]). To
find the solutions, use was made of implicit techniques depending on the assignment of the functions. The
method of [228] generalized different approaches and contributed to further development of the indicated
problem. Its main idea lies in the use of series of a generalized form and of special functional transformations
which eventually lead to analytical solutions in new functional forms that include all particular cases studied
earlier. Thus, for the first boundary-value problem

∂T ⁄ ∂t = a∂2T ⁄ ∂x2 ,   0 < x < γ √2at  ,   t > 0 ; (42)

T (x, t)_x=0 = ϕ1 (t) =   ∑ 

k=−∞

k=+∞

  bk ⁄ ntk
 ⁄ n ,   t > 0 ;   T (x, t)_

x=γ√2at
 = ϕ2 (t) =   ∑ 

k=−∞

k=+∞

  ck ⁄ mtk
 ⁄ m ,   t > 0 , (43)

where n and m are arbitrary real numbers, with the use of successive transformations

ξ = 
ix

√2at
   (i = √− 1  ) ;   T (x, t) ≡ U (ξ, t) = exp (ξ2 ⁄ 4) W (ξ, t) (44)

problem (42)−(43) is transformed relative to the function W(ξ, t):

W (ξ, t) =   ∑ 

k=−∞

k=+∞

  Nk ⁄ n (ξ) tk
 ⁄ n + Mk ⁄ m (ξ) tk

 ⁄ m ,

the unknown coefficients being found from satisfying all the conditions of the problem transformed. The final
result will be written as

T (x, t) = exp 



− 

x2

8at




     ∑ 

k=−∞

k=+∞

   bk ⁄ n ×

× 

D−2k ⁄ n−1 (γ) D2k ⁄ n 


ix

√2at




 − D2k ⁄ n (iγ) D−2k ⁄ n−1 





x

√2at





D−2k ⁄ n−1 (γ) D2k ⁄ n (0) − D2k ⁄ n (iγ) D−2k ⁄ n−1 (0)
 tk

 ⁄ n + exp 




γ2

4




 ck ⁄ m ×

× 

D2k ⁄ m (0) D−2k ⁄ m−1 


x

√2at




 − D−2k ⁄ m−1 (0) D2k ⁄ m 



ix

√2at





D−2k ⁄ m−1 (γ) D2k ⁄ m (0) − D2k ⁄ m (iγ) D−2k ⁄ m−1 (0)
 tk

 ⁄ m , (45)

where Dp ⁄ q(z) is the function of a parabolic cylinder. In the particular cases ϕ1(t) = b0 and ϕ2(t) = c0, expres-
sion (45) yields
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T (x, t) = b0 − (b0 − c0) Φ 


x

2 √at




 Φ−1 (γ ⁄ √2 ) .

If ϕi(t) = Ait
n⁄2 (n = 0, 1, 2, ...) expression (45) is reduced to the form

T (x, t) =  ∑ 

m=1

2

 










(− 1)m A1n ! i2n erfc [(− 1)m γ ⁄ √2 ] + (− 1)m−1 A2
 ⁄ 4

n

i2n erfc (γ ⁄ √2 ) + i2n erfc (− γ √2 )
  Φ∗  





(− 1)m−1 x

2√at














 (4t)n .

Similarly we can also consider the second and third boundary-value problems both in a bounded region and
a semibounded one and also a system of two media separated by a moving boundary, with boundary condi-
tions of the fourth kind. For the particular values of the boundary functions, the method allows different
(equivalent) forms of solutions, which is of importance for applications. The method includes as a particular

case a series of self-similar solutions of the equation Tt
′ = a(Txx

′′  + 
m
x

 Tx
′ ) (m = 0, 1, 2) in the form T(z, t) =

tpϕ(z), z = x2 ⁄ (at), where, at the moving boundary β√ t , boundary conditions of the first or second kind are
assigned in the form

T (x, t)_x=β√ t  = tp ϕ (β2 ⁄ a) ,   t > 0 ;   ∂T ⁄ ∂x_x=β√ t  = (2β ⁄ a) ϕ′ (β2 ⁄ a) t p−1 ⁄ 2 ,

where p is a real number.
Further development of the indicated approach is the passage to a region of the form x ∈  [γ1√2at ,

γ2√2at ], t ≥ 0, and to the construction of the Green’s functions of the corresponding boundary-value problems
in regions with a boundary moving by a parabolic law and a formal extension of the method to the Stefan
problems. Of special interest is the development of the method of the Green’s functions, taking into account
the informativeness of the latter. Here we can propose another method if the problem for G(x, t, x′, τ) is
formulated in a form equivalent to (10)−(12), namely,

∂G ⁄ ∂t = a∂2G ⁄ ∂x2 + δ (x − x′) δ (t − τ) ,   x > γ √ t  ,   t > 0 ;

G (x, t, x′, τ)_t=0 = 0 ,   x > 0 ;   _G (x, t, x′, τ)_<+∞ ,   x ≥ 0 ,   t ≥ 0 .
(46)

To (46) we must add boundary conditions of the form (12). Thus, in the case of the first boundary-value
problem the transformations

z = 
x

√2at
 ,   t′ = (1 ⁄ 2) ln t ;   G (x, t, x′, τ) ≡ G1 (z, t′, x′, τ)

in combination with the exponential Fourier transformation with respect to the variable t′ ∈  (−∞, +∞)

G
__

1 (z, ξ, x′, τ) = (1 ⁄ √2π )  ∫ 
−∞

+∞

 G1 (z, t′, x′, τ) exp (− iξt′) dt′

 reduce the initial problem to the form [229]

d2G
__

1
 ⁄ dz2 + zdG

__
1
 ⁄ dz − iξG

__
1 = − 

1

2 √πaτ
 τ−iξ ⁄ 2 δ (z − z0) ,   z > γ ⁄ √2a  ,
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G
__

1_z=γ√2a = G
__

1_z=∞ = 0   (z0 = x′ ⁄ √2aτ  ) , (47)

which allows the passage to the following equivalent problem:

d2G
__

1
 ⁄ dz2 + zdG

__
1
 ⁄ dz − iξG

__
1 = 0 ,   z > γ ⁄ √2a  ,   G

__
1_z=γ ⁄ √2a  = G

__
1_z=∞ = 0 ; (48)

G
__

1_z=z0−0 = G
__

1_z=z0+0 ;   
dG
__

1

dz



 z=z0−0

 − 
dG

__
1

dz



 z=z0+0

 = 
1

2 √aπ
 τ−(1 ⁄ 2)(1+iξ) . (49)

Condition (49) follows from (47) if we integrate both sides of the equation with respect to z ∈
[z0 − ε, z0 + ε] and pass to the limit when ε → 0. To solve problem (48)−(49), we must use the theory of
functions of a parabolic cylinder that satisfy (48) and then return to the space of inverse transforms according
to the inversion formula for the Fourier transformation. Passage to the equivalent problem is a very effective
approach that can also be used for other laws of motion of a boundary. However, investigations for the re-
gions indicated in this part of the review are first of all required. Here, just as in other cases, one should be
attentive in formulating boundary conditions for the corresponding Green’s function, especially for the second
and third boundary-value problems (in the form of (12)). The formal passage to relations (16)−(17) was the
reason why a number of works on this problem were incorrect.

4. Method of a Generalized Integral Transformation. Region [0, y(t)], t ≥ 0, y(0) ≥ 0. Stefan Problem

In [44, 201, 230], it is proposed to generalize the method of integral transformations to the noncylin-
drical region x ∈  [0, y(t)], t ≥ 0, including the case y(t) = l = const, too. Especially efficient was the formal
application of the method to solving the Stefan problem and a more general Stefan problem − boundary-value
problems for the heat-conduction equation with a free boundary. The features of the method are the possibil-
ity of considering nondegenerate regions with y(0) = y0 > 0 and a rather wide class of functions in the inho-
mogeneities of the initial formulation of the problem. As a result, the method leads to the analytical solutions
in a new integral form for cases not subject earlier to the study by other approaches. To solve the equation

  
∂T

∂t
 = a 





∂2T

∂x2  + 
1 − 2m

x
 
∂T

∂x




 + f (x, t) (50)

for m = −1 ⁄ 2, 0(0 ≤ x < y(t), t > 0); 1/2(0 < x < y(t), t > 0), we introduce the generalized integral transformation

T
__

 (p, t)  ∫ 
0

y(t)

 x1−m T (x, t) Jm (x √p  ) dx ,

p = β + iω ;   Re p ≤ σ < 0 ;   − π ⁄ 4 < arg √p  < π ⁄ 4 , (51)

an inversion formula for which is written in the form

T (x, t) = 
2

y2 (t)
  ∑ 

n=1

∞

 
an (t) exp [− (√a  µn

 ⁄ y
2 (t)) t]

Jm−1
2  (µn)

 xmJm 




µnx

y (t)




 . (52)

Here µn > 0 are the roots of the equation; Jm(µ) = 0 and an are the unknown coefficients to be found. In
(51)−(52), it suffices to consider the cases m = 0 and m = 1/2 since the case m = −1 ⁄ 2 is reduced to m =
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1/2. Equation (50) and expression (52) are converted to the space of transforms (51), and then by way of
contour integration using the Cauchy theorem we successively write an in the form

an (t) = ∫ 
0

y0

 x1−m T (x, 0) Jm 




µnx

y (t)



 dx + ∫ 

0

t

exp 








√a  µn

y (t)




2

 τ



 ×

× T (y (τ), τ) y1−m (τ) 




dy

dτ
 Jm 





µny (τ)
y (t)




 − 

aµn

y (t)
 Jm−1 





µny (τ)
y (t)








 dτ +

+ a ∫ 
0

t

y1−m (τ) Jm 




µny (τ)
y (t)




 
∂T (y (τ), τ)

∂x
 exp 









√a  µn

y (t)




2

 τ



 dτ +

+ a 




µn

y (t)




m

 δm ∫ 
0

t

exp 








√a  µn

y (t)




2

 τ



 T (0, τ) dτ + ∫ 

0

t

  ∫ 
0

y(τ)

 exp 








√a  µn

y (t)




2

 τ



 ×

× x1−m f (x, τ) Jm 




µnx

y (t)



 dτdx , (53)

where δm = 21−m ⁄ Γ(m), m > 0 and δm = 0, m ≤ 0. In the process of determination of the coefficients an(t), we
find an integral equation that relates the boundary functions of the problem to the law of motion of a bound-
ary (for Re p < 0):

a ∫ 
0

∞
∂T (y (τ), τ)

∂x
 y1−m (τ) Jm (y (τ) √p  ) exp (apτ) dτ + ∫ 

0

y0

x1−m T (x, 0) Jm ×

× (x √p  ) dx + apm ⁄ 2 δm ∫ 
0

∞

T (0, τ) exp (apτ) dτ = ∫ 
0

∞

T (y (τ), τ) y1−m (τ) ×

× 



a √p  Jm−1 (y (τ) √p  ) − 

dy (τ)
dτ

 Jm (y (τ) √p  )



 exp (apτ) dτ −

− ∫ 
0

∞

   ∫ 
0

y(t)

 f (x, τ) x1−m Jm (x √p  ) exp (apτ) dxdτ . (54)

Expressions (52)−(54) represent all the relations required for consideration of a number of boundary-value
problems for Eq. (50) with a free boundary that can be described analytically by the analytical solutions (52).
From (53) it is obvious that we are dealing with the first boundary-value problem when the normal derivative
is additionally assigned at a moving boundary; the unknown law of motion of the boundary is found from
(54). The method also allows a generalization to other types of boundary conditions with the corresponding
selection of the kernels of the transforms in (51) and to the regions [y(t), ∞), t ≥ 0 (here use can be made of
the kernels exp (−x√p) in a Cartesian system and rK0(r√p ) for cylindrical symmetry (K0(z) is the MacDonald
function)) and in this sense represents a further direction in investigations.
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In the particular cases of boundary functions in (53), relations (52)−(54) yield interesting new results.
For example, a solution of the simplest Stefan problem

∂T ⁄ ∂t = a∂2T ⁄ ∂x2 ,   0 < x < y (t) ,   t > 0 ,   y (0) = 0 ,

T (0, t) = ϕ0 = const < 0 ,   t > 0 ;   T (y (t), t) = 0 ,   t > 0 ;   ∂T ⁄ ∂x_x=y(t) = Ady ⁄ dt ,   t > 0 ,
(55)

is well known and has the form [139]

y (t) = β √ t  ;   − 2ϕ0
 ⁄ (A √πa  ) = β exp (β2 ⁄ 4a) Φ (β ⁄ (2 √a  ) ; (56)

T (x, t) = ϕ0 + (Aβ √πa  ⁄ 2) exp (β2 ⁄ 4a)Φ 


x

2 √at




 . (57)

The approach (52)−(54) yields

T (x, t) =  ∑ 

n=1

∞

 bn sin 
nπx

β √ t
 ;   bn = 

Aβ2

nπ
   ∑ 

k=1

∞

  
(− 1)k (an2π2 ⁄ β

2)k

k !
 ×  ∑ 

m=k

∞

 
β2m m !

am (2m + 1) !
 ; (58)

y (t) = β √ t  ;   − 2ϕ0
 ⁄ (A √πa  ) = β exp (β2 ⁄ 4a) Φ (β ⁄ 2 √a  ) . (59)

In [44], the equivalence of expressions (57)−(58) is proved, For the case of cylindrical symmetry with
the known law of motion of a boundary, a problem of the form

∂T

∂t
 = a 





∂2T

∂r2  + 
1

r
 
∂T

∂r




 ,   0 ≤ r < β √ t  ,   t > 0 ;

(60)

(∂T ⁄ ∂r)r=β√ t = q √ t  ,   t > 0   (q = const ) ;   _T (r, t)_ < + ∞ ,   r ≥ 0 ,   t > 0 , (61)

has the solution

T (r, t) = (aq ⁄ 2β) t (4 + r2 ⁄ at) . (62)

From (62) we find the boundary condition T(y(t), t) = q(β2 + 4a)t/(2β). A similar expression is obtained from
the integral relation (54), which can clearly be seen. We can also consider more complicated cases different
from (61).

5. Method of Differential Series. Region [0, y(t)], t ≥ 0, y(0) ≥ 0

In a series of works [16, 56, 75, 80] (and references in [119]), consideration is given to another ap-
proach to a region with an arbitrarily moving boundary. Its practical use assumes a computation of the de-
rivatives of any order of the expressions of a special form in the common term of a series. The method
makes it possible to obtain an analytical solution of the problem for any form of boundary conditions, includ-
ing the case h = h(t) in the boundary condition of the third kind at the boundaries of the region. The method
is especially efficient in the solution of inverse problems for a heat-conduction equation and also of inverse
Stefan problems where the temperature (or the heat flux) at a fixed boundary, the initial distribution of the
temperature, and its value in a medium are found by the known law of motion of a boundary and Stefan
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conditions at a moving boundary. It is essential that the physical content of the problem remains constant for
the most part, but the initial problem is simplified and in order to solve it one of the above approaches can
be applied. It is shown that the solutionT(x, t) of the nonhomogeneous equation

∂T

∂t
 = a 

∂2T

∂x2 + f (x, t) ,   0 < x < y (t) ,   t > 0 , (63)

can be written in the form

T (x, t) = T (y (t), t) +  ∑ 

n=1

∞

 
1

an (2n) !
 
∂n−1

∂tn−1
 

[y (t) − x]2n 

d

dt
 T (y (t), t)


 −

−  ∑ 

n=0

∞

 
1

an (2n + 1) !
 
∂n

∂tn
 



[y (t) − x]2n+1 

∂T (y (t), t)
∂x




 −

−  ∑ 

n=0

∞

 
1

an+1 (2n + 1) !
 
∂n

∂tn
  ∫ 

x

y(t)

 (ξ − x)2n+1 f (ξ, t) dξ . (64)

It represents the basic formula in the solution of boundary-value problems for Eq. (63). Relation (64) can be
called a generalized Cauchy series for Eq. (63) where the Cauchy conditions are assigned on the analytical
(infinitely differentiable) curve x = y(t). Let, for Eq. (63) when y(0) = y0 > 0, the following Stefan boundary
conditions be assigned:

T (x, 0) = Φ0 (x) ,   0 < x < y0 ;   T (y (t), t) = Tcr ,   t > 0 ; (65)

∂T ⁄ ∂x_x=y(t) = Ady ⁄ dt ,   t > 0 , (66)

where A = ± αn(ρ ⁄ λ), αn is the heat of transformation, ρ is the density, and λ is the thermal conductivity; the
sign (+) corresponds to the coding and the sign (−) to the heating of the medium of surface x = 0. On this
surface we can assign one of the three boundary conditions (of the first, second, or third kind)

(β1∂T ⁄ ∂x + β2T)x=0 = β3 ϕ (t) ,   t > 0 . (67)

Considering the law of motion of a boundary and the Cauchy conditions at a moving boundary to be as-
signed, we write T(x, t) from (64) (for f(x, t) = 0):

T (x, t) = Tcr − A  ∑ 

n=1

∞

 
1

an (2n) !
 
∂n

∂tn
 


 [y (t) − x]2n


  ,

(68)

whence it is easy to write the initial distribution of the temperature and (for example) its value for x = 0:

Φ0 (x) = Tcr − A  ∑ 

n=1

∞

 
1

an (2n) !
 




∂n

∂tn
 [y (t) − x]2n


 t=0

 ;    ϕ (t) = Tcr − A  ∑ 
n=1

∞

 
1

an (2n) !
[y2n (t)](n) . (69)
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If y(0) = 0, the considered region is degenerate, i.e., at the initial instant it is reduced to the point x = 0 and
has initial temperature equal to zero (y0 = 0, Φ0(x) = 0). For this case, the method yields efficient relations
for finding the unknown law of motion of a boundary, which means the actual solution of primal Stefan
problems and more general ones for a heat-condition equation with a free boundary. Thus, for the above
Cauchy conditions and the first-kind boundary conditions in (67) the method yields (for f(x, T) = 0) the fol-
lowing relation to find y(t):

  ∑ 

n=1

∞

 [y2n (τ)](n) ⁄ (2n) ! = [Tcr − ϕ (τ)] ⁄ Aa   (τ = at) . (70)

In the space of the Laplace transforms ∫ 
0

∞

...  exp (−pt)dt, Re p ≥ β > 0, |arg √p | < π ⁄ 4, expression (70) is trans-
formed to the integral equation

  ∫ 
0

∞

exp (− pτ) cosh [y (τ) √p  ] dτ = 
Tcr + aA

aAp
 − 

ϕ
__

 (p)
aA

 , (71)

which is solved exactly by the known approaches for a number of particular values of the boundary function
ϕ(t).

In more complicated cases, (71) makes it possible to study the asymptotic character of motion of a
boundary for larger times (references in [119]). Similar relations can be obtained with boundary conditions of
the second and third kind in (67). In the case of cylindrical and spherical symmetry for the Stefan problem
of the form

∂T

∂t
 = a 

1

rm 
∂
∂r

 



rm 

∂T

∂r




 ,   0 ≤ r < y (t) ,   t > 0 ;

T (y (t), t) = Tcr (t > 0) ;   (∂T ⁄ ∂r)r=y(t) = Ady ⁄ dt + ϕ (t) ,   t > 0 ;

∂T ⁄ ∂r_r=0 = 0 ,   t > 0   (m = 1, 2 ;   y (0) = 0) ,
(72)

the method yields the following relations for y(t):

   ∑ 
n=0

∞

 
[y(2n+1) (τ)](n)

[(2n) !!]2  




dy

dτ
 + 

ϕ (τ)
aA




 = 0 ,   m = 1   (τ = at) ;

   ∑ 
n=0

∞

 
[y2(n+1) (τ)](n)

(2n + 1) !
 




dy
dτ

 + 
ϕ (τ)
aA




 = 0 ,   m = 2 ,

which can be studied using the known approaches of computational mathematics. For a number of particular
laws of motion of a boundary y(t), the series in (64) can be transformed to power ones or summed up. Thus,
for a variable velocity of motion of a boundary v(t) = bt and constant temperature ϕ0 and heat flux q0 at a
moving boundary, expression (64) (for f = 0) is reduced to the form [154]

518



T (x, t) = ϕ0 + q0  ∑ 

n=0

∞

 
(− 1)n (2n) ! bn (x − bt2 ⁄ 2)3n+1

a2n (3n) ! n ! 2n  ,

whence it is easy to obtain the temperature regime at a fixed boundary. For y(τ) = √βτ + h2  (τ = at) and
condition (66), the series (68) (when Tcr = 0) yields

T (x, t) = − aA √πB  exp (B ⁄ 4) 



Φ (√B  ⁄ 2) − Φ 




x

2
 √ B

Bτ + h
2  








 ,

whence the functions (69) corresponding to the assigned law of motion of a boundary are found. Similarly,
we can also consider other laws of motion of a boundary, in particular, y(τ) = √Aτ2 + Bτ + C , including the
spherically symmetric layer R0 < r < R(τ) for the equation in (72) (references in [119]).

One problem of the presented approach is the establishment of the rate of convergence of the series
in (64).

6. Method of Functional Transformations. New Laws of Motion

G. A. Grinberg proposed efficient functional transformations for the conversion of regions with mov-
ing boundaries to regions with fixed boundaries that considerably increase the number of concrete laws of
motion of a boundary, for which it is possible to obtain an exact analytical solution of the problem (refer-
ences in [119]). The cases of variation in the region with retention of similarity xi ∈  [0, y(t)], t ≥ 0 (i = 1, 2,
3); without retention of similarity xi ∈  [0, yi(t)], t ≥ 0 (i = 1, 2, 3); the region xi ∈  [yi

(0)(t), yi
(1)(t)], [yi(t), ∞),

t ≥ 0 (i = 1, 2, 3) have successively been considered. All the yi(t) are continuously differentiable functions of
second order inclusive.

For expanding or contracting regions with retention of similarity, the equation

∂T ⁄ ∂t = a∆T (M, t) + f (M, t) ,   M = M (x1, x2, x3) ,   0 < xi < y (t) ,   t > 0 , (73)

is successively transformed to

ξi = xi
 ⁄ y (t) ,   T (M, t) ≡ U (P, t) ,   P = P (ξ1, ξ2, ξ3) ;

U (P, t) = [y (t)]−n ⁄ 2 exp 






− 

1
4a

 y (t) y′ (t)  ∑ 

i=1

3

 ξi
2






 W (P, t) .

(74)

Here n = 3 for a spatial problem, n = 2 for a planar problem, and n = 1 for a one-dimensional problem.
Equation (73) becomes as follows:

y2 (t) 
∂W

∂t
 = a∆W (P, t) + 

1
4a

 y3 (t) y′′  (t) 






 ∑ 

i=1

3

 ξi
2






 W + F (P, t) ,   0 < ξi < 1 ,   t > 0 , (75)

where F(P, t) is the new (unknown) function. If the "new" time τ = ∫ 
0

t

y−2(t′)dt is introduced, taking into ac-

count that dτ ⁄ dt > 0 and τ increase with t, (75) will take the form
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∂W

∂τ
 = a∆W (P, τ) + 

1
4a

 y3 (τ) y′′  (τ) 






 ∑ 

i=1

3

 ξi
2






 W + F (P, τ) ,   0 < ξi < 1 ,   τ > 0 , (76)

and in this form differs from the initial equation (73) just by the presence of the second term on the right-
hand side (but in the region with fixed boundaries). In the particular case where y′′(t) = 0, i.e., y(t) = At + B,
the difference of these equations disappears completely. The homogeneous equation (75) allows the separation
of variables (in Cartesian, cylindrical, and spherical coordinates), and following this direction we can find the
solution of the first boundary-value problem in the known functions for uniformly expanding or contracting
regions that take, in (75), the shape of an unbounded plate (n = 1), a rectangle (n = 2), a rectangular paral-
lelepiped (n = 3), a cylinder of finite length, a sphere or a spherical layer, etc. With regard to the second and
third boundary-value problems, here, in the initial region, it is more expedient to construct the Green’s func-
tions since the transform (74) converts boundary conditions of the second and third kind to a boundary con-
dition of the third kind with a time-variable coefficient of heat exchange. The exact solutions of this class of
problems are very cumbersome [119]. In constructing the Green’s function in the spatial region, use can be
made of the method of the product of solutions of one-dimensional problems. In the case where y3(t)y ′′(t) =
−α = const ≠ 0 in (95), i.e., y(t) = √(At + B)2 − α ⁄ A2  (A and B are const), Eq. (75) also allows the separation
of variables; precisely the same problems as for a uniform law of motion of a boundary can be solved for it.
We should note the especially important case y(t) = √Mt + N  for y3(t)y′′(t) = −(M2 ⁄ 4) where the solution of
the initial problem with boundary conditions of any kind is possible. These solutions can have the form of
functional constructions different from (45).

For the regions that change with time without retention of similarity, Eq. (73) is transformed using
the relations

  ξi = xi
 ⁄ yi (t) ,   T (M, t) ≡ U (P, t) ,   P = P (ξ1, ξ2, ξ3) ;

U (P, t) = 






∏ 

i=1

3

 yi (t)







−1 ⁄ 2

 exp 






− 

1
4a

  ∑ 

i=1

3

 yi (t) yi
′ (t) ξi

2






 W (P, t)

(77)

and becomes as follows:

∂W

∂t
 = a  ∑ 

i=1

3

 
1

yi
2 (t)

 




∂2W

∂ξi
2  + 

1

4a2 ξi
2 yi

′′  (t) yi
3 (t) W




 + F (P, t) . (78)

If yi
′′(t)yi

3(t) = −αi, i.e., yi(t) = √(Ait + Bi)2 − αi
 ⁄ Ai

2 , then (78) (for F = 0) allows the separation of variables,
and the first boundary-value problem can be solved exactly. Here we should also single out the case yi(t) =
√Mit + Ni , which makes it possible to obtain the solution of the initial problem with boundary conditions of
any order at moving boundaries.

In the cylindrical coordinates M(x1, ϕ, x2), the equation

∂T ⁄ ∂t = a∆T (M, t) + f (M, t) ,   0 ≤ x1 < y1 (t) ,   0 < x2 < y2 (t) ,   0 ≤ ϕ ≤ 2π ,   t > 0 , (79)

by the transformations

ξi = xi
 ⁄ yi (t) ,   T (M, t) ≡ U (P, t) ,   P = P (ξ1, ϕ, ξ2) ,
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U (P, t) = 
1

y1 (t) √y2 (t)
 exp 







− 

1

4a
  ∑ 

i=1

2

 ξi
2 yi (t) yi

′ (t)






 W (P, t)

(80)

is reduced to the form

1

a
 
∂W

∂t
 =  ∑ 

i=1

2

 
1

yi
2 (t)

 




∂2W

∂ξi
2  + 

ξi
2

4a2 yi
3 (t) yi

′′  (t) W



 + 

1

ξ1

 
∂W

∂ξ1

 + 
1

ξ1
2 ×

× 
∂2W

∂ϕ2  + F (P, t) ,   0 ≤ ξ1 < 1 ,   0 < ξ2 < 1 ,   0 ≤ ϕ ≤ 2π ,   t > 0 . (81)

If, just as above, yi
3(t)yi

′′(t) = −αi, i.e., yi(t) = √(Ait + Bi)2 − αi
 ⁄ Ai

2  and in the particular cases of this general
dependence yi(t) = Ait + Bi and yi(t) = √Mit + Ni , then (81) can be solved by the known approaches.

Let now (73) be assigned in the region xi ∈  [yi
(0)(t), yi

(1)(t)], t ≥ 0. Using the relations

ξi = [xi − yi
(0) (t)] ⁄ ηi (t) ;   ηi (t) = yi

(1) (t) − yi
(0) (t) ;   T (M, t) ≡ U (P, t) ;

U (P, t) = W (P, t)  ∏ 

i=1

3

 ηi
−1 ⁄ 2 (t) exp 







− 

1
4a

 






ηi ηi

′ ξi
2 + 2ηi yi

(0) ξi + ∫ 
0

t



yi

(0)′

 (τ)


2

dτ














(82)

we transform Eq. (73) to the form

∂W

∂t
 = a  ∑ 

i=1

3

 
1

ηi
2 





∂2W

∂ξi
2  + 

1

4a2 



ηi

3 ηi
′′  ξi

2 + 2ηi
3 yi

(0)′′

 ξi



 W




 + F (P, t) ,  0 < ξi < 1 ,   t > 0 , (83)

and in this form it allows an exact solution in the known functions if for all t > 0 the conditions ηi
3ηi

′′  = const
and yi

3yi
(0)′′  = const are simultaneously fulfilled. This means:

if   ηi = const ,   yi
(0) = Ait

2 + Bit + Ci ;
(84)

if   ηi = √ Ait
2 + Bit + Ci  ,   yi

(0) = Di √ Ait
2 + Bit + Ci  + Mit + Ni ; (85)

if   ηi = Ait + Bi ,   yi
(0) = Ci (Ait + Bi)

−1 + Dit + Ei .
(86)

The particular cases of the motions (84)−(86) are considered above. In the cylindrical coordinates M(x1, ϕ,
x2) for x1 ∈  [y1(t), αy1(t)](α > 1), x2 ∈  [y2

(0)(t), y2
(1)(t)], and ϕ ∈  [0, 2π], t ≥ 0, we introduce the transforma-

tions

ξ1 = x1
 ⁄ y1 (t) ,   ξ2 = [x2 − y2

(0) (t)] ⁄ η (t) ,   η (t) = y2
(1) (t) − y2

(0) (t) ;   T (M, t) ≡ U (P, t) ,

P = P (ξ1, ϕ, ξ2) ;   U (P, t) = W (P, t) y1
−1 (t) η−1 ⁄ 2 (t) ×
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× exp 






− 

1
4a

 






ξ1

2 y1y1
′  + ηη′ξ2

2 + 2ηξ2 y2
(0)′ + ∫ 

0

t

(y2
(0)′ (τ))2 dτ














 .

(87)

Equation (73) becomes as follows:

1

a
 
∂W

∂t
 = 

1

y1
2 





∂2W

∂ξ1
2  + 

1

ξ1

 
∂W

∂ξ1

 + 
1

4a2 ξ1
2y1

3 y1
′′ W + 

1

ξ1
2 

∂2W

∂ϕ2




 +

+ 
1

η2 




∂2W

∂ξ2
2  + 

1

4a2 η3η′′ ξ2
2 + 2η3y1

(0)′′ξ2

  W




 + F (P, t) ,

1 < ξ1 < α ,   0 < ξ2 < 1 ,   0 ≤ ϕ ≤ 2π ,   t > 0 , (88)

and allows an exact solution in the known functions if the conditions y1
3y1

′′  = const, η3η′′  = const, and
η3y1

(0)′′  = const simultaneously occur; for y1(t) = √ A1t
2 + B1t + C2 , the functions y2

(0)(t) and y2
(1)(t) satisfy equa-

tions of motion of the form (84)−(86). Thus, for the initial equation (73) the first boundary-value problem is
solved: a) for a parallelepiped one pair of whose parallel sides moves in the direction of its axis by the law
(84), the second pair of which moves by the law (85), and the third pair − by the law (86); b) for a bounded
hollow cylinder whose lateral surfaces move by the law given above for y1(t) and αy1(t) and whose ends
move by any of the laws (84)−(86).

With regard to the semibounded region xi > yi(t), t > 0 (i = 1, 2, 3), for Eq. (73) here we introduce
the transformations

ξi = xi − yi (t) ,   T (M, t) ≡ U (P, t) ,   P = P (ξ1, ξ2, ξ3) ,

U (P, t) = W (P, t) exp 









− 

1
2a

 






 ∑ 

i=1

3

 ξi yi
′ (t) + 

1
2

 ∫ 
0

t 





 ∑ 

i=1

3

 yi
′
2

 (τ)






 dτ

















 ,

(89)

which make it possible to represent (73) as follows:

∂W
∂t

 = a∆W (P, t) + 
1
2a

 






 ∑ 
i=1

3

 yi
′′  (t) ξi







 W + F (P, t) ;   ξi > 0 ,   t > 0 . (90)

It follows from (90) that when yi
′′(t) = 0, i.e., yi(t) = Ait + Bi, we have the classical case; when yi

′′(t) = αi

≠ 0 and yi(t) = αit
2 ⁄ 2 + βit the equation allows the separation of variables. Relations (77) and (89) make it

possible to consider a combination of regions with moving boundaries; too: bounded regions in some space
variables and semibounded in other derivatives. Here we can also indicate certain particular cases of solvabil-
ity of spatial problems in the known functions. For example, for

∂T ⁄ ∂t = a∆T (M, t) ,   x1 > y1 (t) = αt2 ⁄ 2 + βt + γ ,   0 < xi < yi (t) ,   t > 0   (i = 2, 3) ,

we apply expression (89) with respect to x1 (i = 1) and pass to (90).
We then separate the variables, setting W = µ(ξ1)Θ(x2, x3, t) exp (−λt). We find 
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µ′′  + 




α
2a2 ξ1 − λ




 µ = 0 ,   ξ1 > 0 ;   ∂Θ ⁄ ∂t = a∆Θ (x2, x3, t) ,   0 < xi < yi (t) ,   t > 0 .

The spectral problem for µ(ξ1) is considered below; the equation for Θ(x2, x3, t) is transformed using
(77)−(78). In particular, when yi(t) = √ Ait

2 + Bit + Ci  (i = 2, 3), (78) will take the form

1

a
 
∂W

∂t
 =  ∑ 

i=2

3

 yi
−2 (t) 





∂2W

∂ξi
2  + 

AiCi − Bi
2

4a2  ξi
2W




 ,   0 < ξi < 1 ,   t > 0 . (91)

In this equation, the variables are separated if we set W = ϕ1(t)ϕ2(ξ2)ϕ3(ξ3) and subject the functions ϕi to
the conditions

ϕ1
′  (t) = 







 ∑ 

i=2

3

 
λi

yi
2 (t)







 ϕ1 (t) ;   

∂2ϕi

∂ξi
2  + 





AiCi − Bi
2

4a2  ξi
2 + λi




 ϕi = 0 ,

where λi (i = 1, 2) are the separation variables. The solutions of these equations are expressed in terms of
confluent hypergeometric functions. If y2(t) = y3(t) (uniform expansion or contraction), then Eq. (91) is sim-
plified

1

a
 
∂W

∂t
 = y2

−2 (t) 



∆W (ξ2, ξ3, t) + 

A2C2 − B2
2

4a2  (ξ2
2 + ξ3

2) W




and in this form allows the separation of variables not only in Cartesian coordinates but also in polar coordi-
nates. The problem is solved exactly for circular regions, too. In each of the considered cases of motion of a
boundary where the transformed equation allows the separation of variables, the solution of the problem can
be brought to completion according to the following scheme. In the first step, the corresponding problem in
eigenvalues and eigenfunctions is solved; then, based on the solution found, we introduce an integral trans-
formation, its inversion formula, and a transform of the second partial derivative. Thus, the required body of
mathematics that makes it possible to write the solution sought is constructed in advance. Following this di-
rection, we can obtain results of interest for the theory of special functions in solving spectral problems for
ordinary differential equations of second order. Let us consider one of these characteristic examples of find-
ing the solution of the first boundary-value problem for Eq. (73) in the region x > y(t), t > 0, in the one-di-
mensional case (for f = 0). The transformations (89)−(90) (i = 1) for the case y′′(t) = −a2ω (ω > 0) yield

1

a
 
∂W

∂t
 = 

∂2W

∂ξ2  − 
1

2
 ωξW ,   ξ > 0 ,   t > 0 ;

(92)

W (ξ, 0) = 0 ,   ξ ≥ 0 ;   W (0, t) = ϕ (t) ,   t ≥ 0 ;   _W (ξ, t)_ < + ∞ ,   ξ ≥ 0 ,   t ≥ 0 . (93)

Equation (92) has particular solutions of the form W = Ψ(ξ) exp (−aωγ2t ⁄ 2), where γ2 is the separation con-
stant. The spectral problem

d2Ψ
dξ2  + (1 ⁄ 2) ω (γ2 − ξ) Ψ (ξ) = 0 ,   ξ > 0 ;   Ψ (ξ)_ξ=0 = Ψ (ξ)_ξ=∞ = 0

has the solution
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Ψn (ξ) = (π ⁄ √3 ) √ γn
2 − ξ  


{J1 ⁄ 3 [(1 ⁄ 3) √2ω (γn

2 − ξ)3 ⁄ 2] + J−1 ⁄ 3 [(1 ⁄ 3) √2ω (γn
2 − ξ)3 ⁄ 2] 


  ;  γn

2 = (9µn
2 ⁄ 2ω)1

 ⁄ 3 ,

where µn > 0 are roots of the equation J1⁄3(µ) + J−1⁄3(µ) = 0.
The integral transformation and the inversion formula for it have the form

W
__

 (γn, t) = ∫ 
0

∞

W (ξ, t) Ψn (ξ) dξ ;   W (ξ, t) =  ∑ 
n=1

∞

 
Ψn (ξ)

&Ψn&
2 W

__
 (γn, t) ,

where

&Ψn&
2 = (1 ⁄ 3) π2 γn

2 [J−2 ⁄ 3 (µn) − J2 ⁄ 3 (µn)]2 .

Here,

  ∫ 
0

∞

(∂2W ⁄ ∂ξ2 − (1 ⁄ 2) ωξW) Ψn (ξ) dξ = − 
πγn √ω

√6
 ϕ (t) [J−2 ⁄ 3 (µn) − J2 ⁄ 3 (µn)] − (1 ⁄ 2) ωγn

2 W
__

 (γn, t) .

The required body of mathematics is constructed. New we write the solution of the sought problem
(92)−(93):

W (ξ, t) =  ∑ 

n=1

∞

 
Ψn (ξ)

&Ψn&
2 










− 

πaγn

√3
 √ ω ⁄ 2  [J−2 ⁄ 3 (µn) − J2 ⁄ 3 (µn)]  ∫ 

0

t

exp [− (1 ⁄ 2) ωγn
2 a (t − τ)] ϕ (τ) dτ










 .

The functional transformations given above also extend to the corresponding boundary conditions
for Eq. (73); the expansion theorems for the transformed equations are of importance for the indicated
transformations (references in [16]). Taking into account the promising nature of the direction in further in-
vestigations presented in this item, we give below the total data on the types of boundary motion and the
form of boundary conditions for which an exact analytical solution of the thermal problem is possible.

Summing up, we emphasize that we are eventually dealing with the necessity of solving spectral
problems for the equation

1

ξm 
d

dξ
 



ξm 

dΨ (ξ)
dξ




 + α [γ2 − q (ξ)] Ψ (ξ) = 0 , (94)

where q(ξ) is a given function on a certain interval of variation of the variable ξ (q(ξ) = ξ; ξ2, etc.); m = 0,
1, and 2. These issues are considered in detail in the known monographs of Titchmarsh [231]. As results on
the solution of spectral problems of this kind are accumulated, new laws of motion of a boundary, i.e., cases
that allow the exact analytical solutions of the corresponding problems of nonstationary heat transfer, can,
apparently, appear.

7. Methods of Solution of Problems of Heat Conduction with a Time-Variable Coefficient
of Heat Exchange

The indicated class of problems is characteristic of regions with moving boundaries, taking into ac-
count that a number of the approaches presented above lead to the necessity of solving the transformed prob-
lem with boundary conditions of the form (∂W ⁄ ∂n)Γ = h(t)[W|Γ − Tmed), where h(t) is a continuously
differentiable function. At the same time, this class of problems is of practical interest in regions with fixed
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boundaries, too, and these cases have begun to receive increased attention in recent decades. The dependence
h(t) is observed in the formation of a thermal boundary layer under the conditions of nonstationary flow of
cooling water about solid surfaces; in the heating of bodies by a pulsating flow; in the motion of a ballistic
body in a medium with variable density and temperature; in the heat exchange of a rolled metal with rolls
and the ambient medium; in studying the phenomena of turbulence in contact measuring of the gas tempera-
ture; in nonstationary cooling of thermoelectric devices; in diffusion processes at a variable temperature, etc.
[154; 232]. In addition to the technological reasons, there are a number of other reasons why the heat-transfer
coefficient changes with time: a change in the physical characteristics of a heat-exchange agent (the velocity
of motion, the emissivity factor, the density, etc.) or a change in the state of the surface of a heated body
with time (oxidation, clogging with dust, cracking, etc.). For an arbitrary law of change in the coefficient h(t),
the sought temperature function is not expressed in quadratures and the exact solution of the problem has the
form of an infinite series. In practice, one employs different approaches that yield exact (in the form of an
infinite series) or approximate solutions of this class of problems for a plate, a cylinder, a sphere, and a
semibounded bar for an arbitrary law h(t) and its particular dependences: exponential, power, root, periodic,
etc. These are: the method of thermal potentials where the heat-conduction equation is reduced to the Volterra
integral equation of the second kind and the Picard process of expansion in a parameter is subsequently used;
the integral von Ka′rma′n−Pohlhausen method from the theory of a hydrodynamic boundary layer, the method
of expansion in a small parameter (perturbation method); the operational approach using the method of suc-
cessive approximations; the method of a bifrequency transfer function; the method of averaging of functional
corrections; the method of reduction of a heat-conduction equation to a system of ordinary differential equa-
tions using the Green’s function, a variational method; the method of splitting of a generalized integral
Fourier transform that yields the integral form of the first approximation for an arbitrary dependence h(t);
asymptotic methods and others [119, 233, 234]. Dispite the variety of the approaches, each of them eventu-
ally reduces the solution of the problem to an infinite series of successive approximations, and the prime
objective of each approach is finding the most appropriate first approximation. Let us briefly consider some
of these approaches in finding an analytical solution of the following problem:

 
∂T

∂t
 = 

∂2T

∂x2  ,   x > 0 ,   t > 0 ;
(95)

T (x, t)_t=0 = T0 ,   x ≥ 0 ;   _T (x, t)_ < + ∞ ,   x ≥ 0 ,   t ≥ 0 ; (96)

(∂T ⁄ ∂x)x=0 = h (t) T (x, t)_x=0 ,   t > 0 . (97)

For simplicity of representation, we set a = 1 and Tmed = 0, which does not limit the generality of the con-
sideration. The solution of Eq. (95) is written in the form

T (x, t) = 
1

2 √πt
  ∫ 
−∞

+∞

 F (ξ) exp 



− 

(x − ξ)2

4t




 dξ (98)

and on the negative semiaxis x as on the initial one we select a function F(x) such that (98) satisfies the
boundary condition (97). The latter leads to a functional equation of the form

(− 1 ⁄ 2) ∫ 
0

∞

f (2 √ xt  ) exp (− x) dx = T0 γ (t) + γ (t) (√π ⁄ 2) ∫ 
0

∞

f (2 √ xt  )x−1 ⁄ 2 x exp (− x) dx , (99)
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where f(x) = F(−x) − T0; γ(t) = h(t)√πt . If it is assumed that the function h(t) is expanded into a series in

powers t
1⁄2, i.e., γ(t) = Σ

n=0

∞

 γntn
 ⁄ 2, and the function f(x) is sought in the form of the series f(x) = Σ

n=0

∞

 anxn, then Eq.

(99) yields for the coefficients an the relation

an = 

T0 γn +  ∑ 

m=0

n−1

 2m−1 Γ 



m + 1

2



 am γn−m

 ⁄ √π

2n−1 Γ (1 + n ⁄ 2)
 ,

and along with this also the solution T(x, t) in the form

T (x, t) = T0 + 
1

2 √πt
   ∑ 

n=1

∞

 an ∫ 
0

∞

ξn exp 



− 

(x + ξ)2

4t




 dξ . (100)

The method of successive approximations for the equation ∂T ⁄ ∂t = a∂2T ⁄ ∂x2 with the initial condition (96)
and the boundary condition (∂T ⁄ ∂x)x=0 = h(t) [T(0, t) − ϕ(t)] yields the solution of the problem in another
form:

T (x, t) = 
x

2 √aπ
  ∫ 

0

t

 
A (τ)

(t − τ)3 ⁄ 2
 exp 




− 

x2

4a (t − τ)



 dτ ,

(101)

A (t) =  ∑ 

n=0

∞

 (− 1)n 


√

a

π
 




 n+1

  ∫ 
0

t

 
h (τ) dτ

√ t − τ
  ∫ 

0

τ

 
h (τ1)

√ τ − τ1

 ...  ∫ 
0

τn−1

 
h (τn) ϕ (τn)

√τn−1 − τn

 dτn .

For the function h(t) bounded on the segment [0, t], the series (101) converges absolutely and uniformly for
all x > 0  and t > 0 in any finite interval of their variation and allows a number of particular cases of interest.
Thus, for h(t) = h0tm and ϕ(t) = Tmedtr, where m and r are real numbers, expression (101) takes the form

T (x, t) = 
Tmedx

2 √aπ
   ∑ 

n=1

∞

 (− 1)n+1 



h0 √ a

π
 



 
n

  ∏ 

k=1

n

 B (r + 1 ⁄ 2 + k (m + 1 ⁄ 2) ; 1 ⁄ 2) ×

× ∫ 
0

t

 
τr+n(m+1 ⁄ 2)

(t − τ)3 ⁄ 2
 exp 




− 

x2

4 (t − τ)




 dτ , (102)

where B(c, d) is the beta function, and it is assumed that [r + 1 ⁄ 2 + k(m + 1 ⁄ 2)] > 0. For m = −(1/2), i.e., h(t)
= h0t−

1⁄2 and r = 0, expression (102) yields the compact solution

T (x, t) = Tmed Φ
∗  





x

2 √at




  ∑ 

n=1

∞

 (− 1)n+1 (h0 √aπ )n = 
Tmedh0 √aπ

1 + h0 √aπ
 Φ∗  





x

2 √at
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on condition that h0√aπ < 1 . Similarly, we can also consider the remaining cases. In particular, problem
(95)−(97) allows the exact solution for h(t) = h0(At2 + Bt + C)−1⁄2 if, to find the solution, we use the functional
transformations presented in item 6 (z = x ⁄ y(t), etc.). As another example having numerous applications, in
(95)−(97) we consider the case where the condition of heat exchange (97) is assigned in the form of a con-
volution of two functions:

(∂T ⁄ ∂x)x=0 = ∫ 
0

t

h (t − τ) T (0, τ) dτ ,   t > 0 . (103)

In the space of (Laplace) transforms, the solution has the form

T
__

 (x, p)
T0

 = 
1

p
 + 

1

p
 exp (− x √p  )  ∑ 

n=0

∞

 (− 1)n+1 




h
_
 (p)
√p





n+1

 ,

whence it is easy to write two approximations for the inverse transform:

T (x, t) ⁄ T0 = 1 − 
1

√π
 ∫ 
0

t

Φ 




x

2 √ t − τ




 dτ ∫ 

0

τ
h (τ1)

√ τ − τ1

 dτ1 +

+ 







1

√π
 ∫ 
0

t

Φ 




x

2 √ t − τ




 dτ ∫ 

0

τ
h (τ1)

√ τ − τ1

 dτ1








t

 ∗  







1

√π
 ∫ 
0

t
h (τ) dτ

√ t − τ







 + ...  .

Thus, the above approaches yield different functional expressions for the first terms of an infinite
series of successive approximations, and the analytical solution of the problem in closed form can be obtained
just for a small number of the particular dependences h(t) in (97). The extension of a class of dependences
h(t) of this kind is one of the open problems of the analytical theory of heat conduction for boundary-value
problems of nonstationary heat and mass transfer with a time-variable relative coefficient of heat exchange
(mass exchange).

Dispite the apparent simplicity of mathematical models of nonstationary transfer in regions with
moving boundaries, the given problems are far from being trivial for obtaining their exact analytical solu-
tion. A practical study is made of the simplest laws of motion of a boundary (linear, parabolic, and quad-
ratic laws), but for these cases, too, the analytical theory of heat conduction is only in the beginning stages
of its development. With regard to the more complex laws of motion of a boundary that are indicated above
in Table 1 and allow the exact analytical solutions of the corresponding boundary-value problems, there is
still much work to be done to find these solutions, study their properties, and construct temperature nomo-
grams. As the analysis of literature sources shows, solution of problems of this kind brings up a large class
of problems of computational mathematics, the theory of special functions, and the methods of mathematical
physics. Also, there is much to be done with regard to the simplest problems of transfer in canonical re-
gions, dispite the well-developed theory for these cases. The task of a researcher is to see these problems
and to understand the necessity of studying them. The expediency of finding exact analytical solutions for
problems of heat conduction in all the cases where it is possible is also obvious. The exact analytical solu-
tions yield graphical dependences between the parameters of the processes in question that are more general,
clear, and appropriate to the phenomenon within the framework of the adopted model than the dependences
established in numerical solution of the initial problem or on the basis of its approximate solution. In the
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latter case, one traditionally comes across the serious problem of evaluating the error of the obtained result
that most frequently remains unknown because of the difficulties of a computational character. It is also sig-
nificant that solutions known in the literature refer to thermal problems based on the classical Fourier phe-
nomenology of the propagation of heat in solids, i.e., for parabolic equations. For more complicated
transport equations based on the hypothesis of Maxwell−Cattaneo−Luikov (a hyperbolic equation [11]), in
media with thermal memory (based on a linearized theory [151]) in deformable media with allowance for
the effect of connectedness of the field of temperature and deformation in a heat-conduction equation [16],
etc., the indicated cases represent a practically undeveloped area of the analytical theory of nonstationary
transport. In this area, there can, probably, be physical results of interest concerning the influence of the mo-
tion of a boundary on transfer processes. These investigations will be in the XXIst century, and the author
wishes the readers success along this road!

TABLE 1. Types of Motion of a Boundary and the Form of Boundary Conditions for the Analytical Solution of
a Thermal Problem

C
ar

te
si

an
 c

oo
rd

in
at

es

Region Moving boundary Boundary conditions are realized

(At + B)2 + C ≤ x < ∞ ξ = x − y(t) I; II

± √(At + B)2 + C  ≤ x < ∞ ξ = x ⁄ y(t) I; III: h(t) = y′(t) ⁄ (2a)

β ≤ x ≤ (At + B)2 + C ξ = 
x − y1(t)

y2(t) − y1(t)
I; II(β = 0)

β √(At + B)2 + C  ≤ x ≤ √(At + B)2 + C ξ = x ⁄ y(t)
I; II(β = 0);

III: β = 0 � h(t) I y− 1(t);
β < 1 � h(t) = βy′(t) ⁄ (2a)

β(C ± √ At + B ) ≤ x ≤ C ± √ At + B ξ = 
x − y1(t)

y2(t) − y1(t)
I; II(β = 0)

(At + B)2 + C ≤ x ≤ (At + B)2 + C + D ξ = 
x − y1(t)

y2(t) − y1(t)
I

(At + B)− 1C1 + C2t + C3 ≤ x ≤ (At + B)− 1

C1 + (C2 + A)t + C3 + B
ξ = 

x − y1(t)
y2(t) − y1(t)

I

C1 √(At + B)2 + C  ≤ x ≤ C4

√(At + B)2 + C  + C2t + C3

ξ = 
x − y1(t)

y2(t) − y1(t)
I

C
yl

in
dr

ic
al

 c
oo

rd
in

at
es √(At + B)2  + C ≤ r < ∞ ξ = r ⁄ y(t) I; III: h(t) = y′(t) ⁄ (2a)

At + B ≤ r < ∞ ξ = r ⁄ y(t) I; III: h(t) = y′(t) ⁄ (2a)

β √(At + B)2 + C  ≤ r ≤ 

 ≤ √(At + B)2 + C  (0 ≤ β < 1)
ξ = r ⁄ y(t)

I; II(β = 0);
III: β = 0 � h(t) I y− 1(t);

0 < β < 1 � h(t) = y′(t) ⁄ (2a)

β(At + B) ≤ r ≤ At + B) (0 ≤ β < 1) ξ = r ⁄ y(t)
I; II(β = 0);

III: β = 0 � h(t) I y− 1(t);
0 < β < 1 � h(t) = βy′(t) ⁄ (2a)

Note: h(t) is the relative coefficient of heat transfer in the boundary condition of the 3rd kind.
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